Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

نویسندگان

  • Moshen Kuai
  • Gang Cheng
  • Yusong Pang
  • Yong Li
چکیده

For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different lo...

متن کامل

Pretreatment and Wavelength Selection Method for Near-Infrared Spectra Signal Based on Improved CEEMDAN Energy Entropy and Permutation Entropy

The noise of near-infrared spectra and spectral information redundancy can affect the accuracy of calibration and prediction models in near-infrared analytical technology. To address this problem, the improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and permutation entropy (PE) were used to propose a new method for pretreatment and wavelength selection of ne...

متن کامل

Non-contact incipient fault diagnosis method of fixed-axis gearbox based on CEEMDAN

Gearbox plays most essential role in the modern machinery for transmitting the required torque along with motion and contributes to wide range of applications. Any failure in gearbox components affects the productivity and efficiency of the system. Most machine breakdowns related to gears are a result of improper operating conditions and loading, hence lead to failure of the whole mechanism. En...

متن کامل

Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance

Characterized by small size, light weight and large transmission ratio, planetary gear transmission is widely used in large scale complex mechanical system with low speed and heavy duty. However, due to the influences of operating condition, manufacturing error, assembly error and multi-tooth meshing, the vibration signal of planetary gear exhibits the characteristics of nonlinear and non-stati...

متن کامل

Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018